Tan^2x+2tanx+1=0

Simple and best practice solution for Tan^2x+2tanx+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Tan^2x+2tanx+1=0 equation:


Simplifying
Tan2x + 2tanx + 1 = 0

Reorder the terms:
1 + 2antx + an2xT = 0

Solving
1 + 2antx + an2xT = 0

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Add '-1' to each side of the equation.
1 + 2antx + -1 + an2xT = 0 + -1

Reorder the terms:
1 + -1 + 2antx + an2xT = 0 + -1

Combine like terms: 1 + -1 = 0
0 + 2antx + an2xT = 0 + -1
2antx + an2xT = 0 + -1

Combine like terms: 0 + -1 = -1
2antx + an2xT = -1

Reorder the terms:
1 + 2antx + an2xT = -1 + 1

Combine like terms: -1 + 1 = 0
1 + 2antx + an2xT = 0

The solution to this equation could not be determined.

See similar equations:

| x^8-x^6+27*x^4-27*x^2+12*y*x^6-12*y*x^4+42*y^2*x^4+42*y^2*x^2+2*y^3*x^4+26*y^3*x^2+8*y^3+12*y^4*x^2+12*y^4+6*y^5+y^6=25 | | x(16*x)=39 | | 8x-3=21-7x+x | | 4*3x= | | x^8-x^6+27*x^4-27*x^2+12*y*x^6-12*y*x^4+42*y^2*x^4+42*y^2*x^2+2*y^3*x^4+26*y^3*x^2+8*y^3+12*y^4*x^2+12*y^4+6*y^5+y^6=2 | | X+11=76 | | 16(2x-3)=4(8x+5) | | 0.3795x-0.308= | | 8.2x(4-3)= | | 9-2d=-8d-9 | | -x^3+48x=0 | | X+9=-45 | | 6-8r=-4-6r-r | | 28x-5= | | f(-6)=8-3[-6+2] | | 5y-30=-4y | | x+4=10x+4 | | -7x-1.6=5x-1.2 | | -3f=-f-8 | | -24y+x=x-24 | | 4x+5x=5x+7 | | Y-10=-8y+8 | | 1+6m+1=10m-2 | | f(1)=[1-4]+5 | | -3-2h=-3h | | 7(1+6x)=469 | | -6(-7p+7)-2=-5p+3 | | -1+10w=6w-9 | | 301=85+6x | | 3y+5x=3 | | -5k+1=-4k-5 | | 3m+9=5m-1 |

Equations solver categories